Quantum Transport Through a ``Charge" Kondo Circuit: Effects of Weak Repulsive Interaction in Luttinger Liquid

Thanh Thi Kim Nguyen, Mikhail N. Kiselev

Abstract


We investigate theoretically quantum transport through the ``charge" Kondo circuit consisting of the quantum dot (QD) coupled weakly to an electrode at temperature \(T+\Delta T\) and connected strongly to another electrode at the reference temperature \(T\) by a single-mode quantum point contact (QPC). To account for the effects of Coulomb interaction in the QD-QPC setup operating in the integer quantum Hall regime we describe the edge current in the quantum circuit by Luttinger model characterized by the Luttinger parameter \(g\). It is shown that the temperature dependence of both electric conductance \(G\propto T^{2/g}\) and thermoelectric coefficient \(G_T\propto T^{1+2/g}\) detours from the Fermi-liquid (FL) theory predictions. The behaviour of the thermoelectric power \(S=G_T/G\propto T\) in a regime of a single-channel Kondo effect is, by contrast, consistent with the FL paradigm. We demonstrate that the interplay between the mesoscopic Coulomb blockade in QD and weak repulsive interaction in the Luttinger Liquid \(g=1-\alpha\) \((\alpha \ll 1)\) results in the enhancement of the thermopower. This enhancement is attributed to suppression of the Kondo correlations in the ``charge" circuit by the destructive quantum interference effects.


Keywords


thermoelectric transport, Luttinger liquid, single-channel Kondo effect, Fermi liquid

Full Text:

PDF

References


G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep. 694 (2017) 1.

V. Zlatic and R. Monnier, Modern Theory of Thermoelectricity, Oxford University Press, Oxford, 2014.

Y. M. Blanter and Y. V. Nazarov, Quantum Transport: Introduction to Nanoscience, Cambridge University Press,

Cambridge, 2009.

K. Kikoin, M. N. Kiselev, and Y. Avishai, Dynamical Symmetry for Nanostructures. Implicit Symmetry in SingleElectron Transport Through Real and Artificial Molecules, Springer, New York, 2012.

C. W. J. Beenakker and A. A. M. Staring, Phys. Rev. B 46 (1992) 9667.

A. V. Andreev and K. A. Matveev, Phys. Rev. Lett. 86 (2001) 280; K. A. Matveev and A. V. Andreev, Phys. Rev.

B 66 (2002) 045301.

R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W. Molenkamp, Phys. Rev. Lett. 95 (2005) 176602.

R. Scheibner, E. G. Novik, T. Borzenko, M. Konig, D. Reuter, A.D. Wieck, H. Buhmann and L. W. Molenkamp,

Phys. Rev. B 75 (2007) 041301.

J. Kondo, Prog. Theor. Phys. 32 (1964) 37.

A. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge, England, 1993.

Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D. Parmentier, A. Cavanna, and F. Pierre, Nature 526 (2015)

Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon,

and F. Pierre, Science 360 (2018) 1315.

K. Flensberg, Phys. Rev. B 48 (1993) 11156.

K. A. Matveev, Phys. Rev. B 51 (1995) 1743.

A. Furusaki and K. A. Matveev, Phys. Rev. B 52 (1995) 16676.

T. K. T. Nguyen and M. N. Kiselev, Phys. Rev. B 97 (2018) 085403.

K. Le Hur, Phys. Rev. B 64 (2001) 161302(R).

K. Le Hur and G. Seelig, Phys. Rev. B 65 (2002) 165338.

T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov, Phys. Rev. B 82 (2010) 113306.

T. K. T. Nguyen, and M. N. Kiselev, Phys. Rev. B 92 (2015) 045125.

L. D. Landau, Sov. Phys. JETP 3 (1957) 920; 5 (1957) 101.

Ph. Nozieres and A. Blandin, ` J. Phys. 41 (1980) 193.

A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and strongly correlated systems, Cambridge

University Press, 1998.

T. Giamarchi, Quantum Physics in One Dimension, Oxford University Press, Oxford, 2004.

S. Tomonaga, Prog. Theor. Phys. 5 (1950) 544.

J. M. Luttinger, Phys. Rev. 135 (1964) A1505.

H. J. Schulz, G. Cuniberti, and P. Pieri Fermi liquids and Luttinger liquids In: G. Morandi et al. (eds) Field

Theories for Low-Dimensional Condensed Matter Systems. Springer Series in Solid-State Sciences, Springer,

Berlin, Heidelberg, 2000.

D. Sen` echal, ` An Introduction to Bosonization In: D. Sen` echal, A.M. Tremblay, C. Bourbonnais, (eds) ` Theoretical

Methods for Strongly Correlated Electrons. CRM Series in Mathematical Physics, Springer, New York, 2004.

S. Jezouin, F. D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, Y. Jin, F. Pierre, Science 342 (2013) 601.

L. I. Glazman, I. M. Ruzin, B. I. Shklovskii, Phys. Rev. B 45 (1992) 8454.

C. L. Kane and Matthew P. A. Fisher. Phys. Rev. Lett. 68 (1992) 1220; C. L. Kane and Matthew P. A. Fisher. Phys.

Rev. B 46 (1992) 15233.

O. M. Auslaender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B. I. Halperin, K. W. Baldwin, L. N. Pfeiffer, K. W.

West, Science 308 (2005) 88.

Y. Tserkovnyak, B. I. Halperin, O. M. Auslaender, A. Yacoby, Signatures of Spin-Charge Separation in DoubleQuantum Wire Tunneling In: A. Glatz, V. I. Kozub, V. M. Vinokur, (eds) Theory of Quantum Transport in Metallic

and Hybrid Nanostructures. NATO Science Series, vol. 230, Springer, Dordrecht, 2006.

I. L. Aleiner and L. I. Glazman, Phys. Rev. B 57 (1998) 9608.

C. L. Kane and Matthew P. A. Fisher, Phys. Rev. Lett. 76 (1996) 3192




DOI: https://doi.org/10.15625/0868-3166/30/1/14685 Display counter: Abstract : 305 views. PDF : 135 views.

Refbacks

  • There are currently no refbacks.




Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 

Email: cip@vjs.ac.vn

Copyright by