Open Access Open Access  Restricted Access Subscription Access


Nguyen Van Thao, Vu Duy Vinh, Do Thi Thu Huong, Chris Gouramanis


In this study, a set of optical and Suspended Particulate Matter data measured in the coastal waters of the Red river delta is examined to develop empirical and semi-analyzed algorithms to process satellite remote sensing data. A scene of high resolution satellite images of Landsat-8 OLI is used to test the algorithm for determining the distribution of Suspended Particulate Matter concentration in marine waters. A numerical model is also developed to calculate Suspended Particulate Matter transportation in the study area and calibrate statistics measured at certain monitoring stations of water flow and Suspended Particulate Matter from river discharged into the sea. The results on Suspended Particulate Matter concentrations in the coastal waters of the Red river delta determined from the satellite image algorithms and those of the numerical model are compared and evaluated.


Remote sensing, algorithm, suspended particulate matter, Red river delta.

Full Text:



Milliman, J. D., and Syvitski, J. P., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100(5), 525–544.

Pruszak, Z., Van Ninh, P., Szmytkiewicz, M., Hung, N. M., and Ostrowski, R., 2005. Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red river delta). Oceanologia, 47(3), 365–385.

Mckim, H. L., Merry, C. J., and Layman, R. W., 1984. Water quality monitoring using an airborne spectroradiometer. Photogrammetric Engineering and Remote Sensing, 50, 353–360.

Curran, P. J. and Wilkinson, H. D., 1985. Mapping the concentration and dispersal pattern of dye from a long sea outfall using digitized aerial photography. Journal of Remote Sensing, 6, 17–31.

Robinson, M. C., Morris, K. P., and Dyer, K. R., 1999. Deriving fluxes of suspended particulate matter in the Humber estuary, UK, using airborne remote sensing. Marine Pollution Bulletin, 37(3–7), 155–163.

Moore, G. F., Aiken, J., and Lavender, S. J., 1999. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS. International Journal of Remote Sensing, 20(9), 1713–1733.

Forget, P., and Ouillon, S., 1998. Surface suspended matter off the Rhone river mouth from visible satellite imagery. Oceanologica Acta, 21(6), 739–749.

Doxaran, D., Froidefond, J. M., and Castaing, P., 2002. A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters. International Journal of Remote Sensing, 23(23), 5079–5085.

Ouillon, S., Douillet, P., Petrenko, A., Neveux, J., Dupouy, C., Froidefond, J. M., Andréfouët, S., and Muñoz-Caravaca, A., 2008. Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors, 8(7), 4165–4185; doi:10.3390/s8074165.

Chen, Z., Hu, C., and Muller-Karger, F., 2007. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250 m imagery. Remote sensing of Environment, 109(2), 207–220.

Doxaran, D., Froidefond, J. M., Castaing, P., and Babin, M., 2009. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuarine, Coastal and Shelf Science, 81(3), 321–332.

Nechad, B., Ruddick, K. G., and Park, Y., 2010. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854–866.

Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., and Knaeps, E., 2015. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sensing of Environment, 156, 157–168.

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere. M., Chayes, D., Ferrini, V., and Wigley, R., 2015. A new digital bathymetric model of the world’s oceans. Earth and Space Science, 2(8), 331–345. doi:10.1002/2015EA000107.

Lefevre, F., Lyard, F. H., Le Provost, C., and Schrama, E. J., 2002. FES99: a global tide finite element solution assimilating tide gauge and altimetric information. Journal of Atmospheric and Oceanic Technology, 19(9), 1345–1356.

Lyard, F., Lefevre, F., Letellier, T., and Francis, O., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5-6), 394–415.

World Ocean Atlas 2013 version 2 (WOA13 V2). Available online: (accessed 20-04-2016).

Sravanthi, N., Ramana, I. V., Yunus Ali, P., Ashraf, M., Ali, M. M., and Narayana, A. C., 2013. An algorithm for estimating suspended sediment concentrations in the coastal waters of India using remotely sensed reflectance and its application to coastal environments. International Journal of Environmental Research, 7(4), 841–850.

Hydraulics, D., 2014. Delft3D-FLOW User Manual: Simulation of multi-dimensional hydrodynamic flows and transport phenomena. including sediments. Technical report; Available online: 3920/185723/Delft3D-FLOW_User_Man-ual.pdf (accessed 20-04-2016).

Schneider, V. R., and Arcement, G. J., 1989. Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains. Available from the US Geological Survey, Books and Open-File Reports Section, Box 25425, Federal Center, Denver, CO 80225-0425. Water-Supply Paper 2339, 1989. 38 p, 22 fig., 4 tab., 23 ref.

Simons, D. B., and Şentürk, F., 1992. Sediment transport technology: water and sediment dynamics. Water Resources Publication.

Uittenbogaard, R. E., 1998. Model for eddy diffusivity and viscosity related to sub-grid velocity and bed topography. Note, WL| Delft Hydraulics.

Duc, D. M., Nhuan, M. T., Ngoi, C. V., Nghi, T., Tien, D. M., van Weering, T. C., and van den Bergh, G. D., 2007. Sediment distribution and transport at the nearshore zone of the Red River delta, Northern Vietnam. Journal of Asian Earth Sciences, 29, 558–565.

Van Rijn, L. C., 2007. Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport. Journal of Hydraulic Engineering, 133(6), 649–667; doi:10. 1061/(ASCE)0733-429(2007)133:6(668).

Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, 91(1), 105–139.

Krone, R. B., 1962. Flume studies of the transport of sediment in estuarial shoaling processes, final report, Hydraul. Eng. Lab. and Sanit. Eng. Res. Lab., Univ. of Calif., Berkeley.

Douillet, P., Ouillon, S., and Cordier, E., 2001. A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs, 20(4), 361–372; doi: 10.1007/s00338-001-0193-6.

Winterwerp, J. C., and Van Kesteren, W. G., 2004. Introduction to the physics of cohesive sediment dynamics in the marine environment (Vol. 56). Elsevier. 576 p. eBook ISBN: 9780080473734; Hardcover ISBN: 9780444515537.

Portela, L. I., Ramos, S., and Teixeira, A. T., 2013. Effect of salinity on the settling velocity of fine sediments of a harbour basin. Journal of Coastal Research, 65(sp2), 1188–1193.

Walstra, D. J. R., Roelvink, J. A., and Groeneweg, J., 2001. Calculation of wave-driven currents in a 3D mean flow model. In Coastal Engineering 2000 (pp. 1050–1063); doi:10.1061/40549(276)81.

Nash, J. E., and Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3), 282–290. doi:10.1016/0022-1694(70)90255-6.

Curran, P. J., Hansom, J. D., Plummer, S. E., and Pedley, M. I., 1987. Multispectral remote sensing of nearshore suspended sediments: a pilot study. International Journal of Remote Sensing, 8(1), 103–112.

Novo, E. M. M., Hansom, J. D., and Curran, P. J., 1989. The effect of viewing geometry and wavelength on the relationship between reflectance and suspended sediment concentration. International Journal of Remote Sensing, 10(8), 1357–1372.

Baker, E. T., and Lavelle, J. W., 1984. The effect of particle size on the light attenuation coefficient of natural suspensions. Journal of Geophysical Research: Oceans, 89(C5), 8197–8203.

Curran, P. J., and Novo, E. M. M., 1988. The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review. Journal of Coastal Research, 4(3), 351–368.

Stumpf, R. P., and Pennock, J. R., 1989. Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary. Journal of Geophysical Research: Oceans, 94(C10), 14363–14371.

Sydor, M., and Arnone, R. A., 1997. Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters. Applied Optics, 36(27), 6905–6912.

Lee, Z. P., 2006. Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications, Rep. 5, 126 p. Int. Ocean-Colour Coord. Group, Dartmouth, NS, Canada.

Häglund, M., and Svensson, P., 2002. Coastal Erosion at Hai Hau Beach in the Red river delta, Vietnam. Lund, Sweden: Lund University (Doctoral dissertation, Master’s thesis).

Te Slaa, S., 2009. Coastal erosion processes near sea dikes in Hai Hau district, Vietnam. Master thesis in Delft University of Technology.

Van Maren, D. S., 2004. Morphodynamics of a Cyclic Prograding Delta: The Red River, Vietnam. Utrecht, the Netherlands: Utrecht University (Doctoral dissertation, Doctoral thesis). 167 p.

Vinh, V. D., and Ouillon, S., 2014. Effects of Coriolis force on current and suspended sediment transport in the coastal zone of Red River Delta. Journal of Marine Sceince and Technology, 14(3), 219–228.

Van Maren, D. S., 2007. Water and sediment dynamics in the Red River mouth and adjacent coastal zone. Journal of Asian Earth Sciences, 29(4), 508–522.


Journal of Marine Science and Technology ISSN: 1859 3097

Published by Vietnam Academy of Science and Technology