SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF POROUS CNTs-FERRITE HYBRID NANOSTRUCTURES FOR SUPERCAPACITOR

Le Trong Lu, Le Thi Thanh Tam, Doan Thanh Tung, Ngo Thanh Dung, Hoang Tran Dung, Nguyen Tuan Dung, Phan Ngoc Minh, Phan Ngoc Hong

Abstract


Carbon nanotubes (CNTs)-ferrites hybrid nanomaterials have attracted extensive research interest owing to their large specific surfae area, high electrical, thermal conductiviy and outstanding electrochemical properties, which are widely investigated for energy conversion and storage devices. Regular syntheses rely mainly on the in situ growth of ferrite nanoparticles (NPs) in the presence of the preformed CNTs. It is very challenging to control the composition and morphology of the individual components, and to scale-up the synthesis. In this work, ferrite NPs were prepared by  solvothermal method. Porous (3D) CNTs-ferrites hybrid aerogels were fabricated by using freeze gelation method. The results indicate that the obtained 3D CNTs-ferrites aerogels were very porous, highly electrical conductive and have good electrochemical properties.

Keywords


electrode, porous, hybrid nanomaterials, supercapacitor

Full Text:

PDF

References


A. S. Arico , P. Bruce , B. Scrosati , J.-M. Tarascon , W. V. Schalkwijk - Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. , 4 , 366 (2005).

P. Simon , Y. Gogotsi - Materials for electrochemical capacitors, Nat. Mater., 7, 845 (2008).

X. Zang, P. Li, Q. Chen, K. Wang, J. Wei, D. Wu, and H. Zhu - Evaluation of layer-by-layer graphene structures as supercapacitor electrode materials, J. Appl. Phys. 115, 024305 (2014).

A. Mishra and S. Ramaprabhu - Ultrahigh arsenic sorption using iron oxide-graphene nanocomposite supercapacitor assembly, J. Appl. Phys. 112, 104315 (2012).

J. Chen, N. Xia, T. Zhou, S. Tan, F. Jiang, and D. Yuan, Int. J. Electrochem. Sci. 4, 1163 (2009).

S. Boukhalfa, K. Evanoff, and G. Yushin - Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes, Energy Environ. Sci. 5, 6872 (2012).

C. T. Hsieh, Y. C. Chen, Y. F. Chen, M. M. Huq, P. Y. Chen, and B. S. Jang - Microwave synthesis of titania-coated carbon nanotube composites for electrochemical capacitors, J. Power Sources 269, 526 (2014).

Y. Zhu, H. I. Elim, Y.-L. Foo, T. Yu, Y. Liu, W. Ji, J.-Y. Lee, Z. Shen, A. T.-S. Wee, and J. T.-L. Thong - Multiwalled Carbon Nanotubes Beaded with ZnO Nanoparticles for Ultrafast Nonlinear Optical Switching, Adv. Mater. 18, 587 (2006).

C. Du, J. Yeh, and N. Pan - High power density supercapacitors using locally aligned carbon nanotube electrodes, Nanotechnology 16, 350 (2005).

S. Chen, Y. Liu, and J. Chen - Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers, Chem. Soc. Rev. 43, 5372 (2014).

R. A. Fisher, M. R. Watt, and W. J. Ready - Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials, ECS J. Solid State Sci. Technol. 2, M3170 (2013).

M. Ho, P. Khiew, D. Isa, T. Tan, W. Chiu, and C. H. Chia – A review of metal oxide composite electrode materials for electrochemical capacitors, Nano 9, 1430002 (2014).

S. W. Lee, J. Kim, S. Chen, P. T. Hammond, and Y. Shao-Horn - Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors, ACS Nano 4, 3889 (2010).

J. H. Park, J. M. Ko, and O. O. Park - Carbon Nanotube/RuO2 Nanocomposite Electrodes for Supercapacitors, J. Electrochem. Soc. 150, A864 (2003).

P.-C. Chen, G. Shen, S. Sukcharoenchoke, and C. Zhou - Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films, Appl. Phys. Lett. 94, 043113 (2009).

Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, and Y. Lu - High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites, Adv. Mater. 23, 791 (2011).

L. Aravinda, K. Nagaraja, H. Nagaraja, K. U. Bhat, and B. R. Bhat - ZnO/carbon nanotube nanocomposite for high energy density supercapacitors, Electrochim. Acta 95, 119 (2013).

P. Lin, Q. She, B. Hong, X. Liu, Y. Shi, Z. Shi, M. Zheng, and Q. Dong - The Nickel Oxide/CNT Composites with High Capacitance for Supercapacitor, J. Electrochem. Soc. 157, A818 (2010).

Dong, A., Ye, X., Chen, J., Kang, Y., Gordon, T., Kikkawa, J. M., & Murray, C. B. - A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals, J. Am. Chem. Soc., 133(4), 998–1006 (2011).

Van Chuc, N., Dung, N. D., Hong, P. N., Quang, L. D., Khoi, P. H., & Minh, P. N.- Synthesis of Carbon Nanotubes on Steel Foils , J. Korean Physic. Soc., 52(5), 1368 (2008).

Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. - Pristine Graphene Aerogels by Room-Temperature Freeze Gelation, Adv. Mate. (2016).

Tantra, R., Schulze, P., & Quincey, P. - Effect of nanoparticle concentration on Zeta-potential measurement results and reproducibility, Particuology, 8(3), 279–285 (2010).

Mombeshora, E. T., Simoyi, R., Nyamori, V. O., & Ndungu, P. G. - Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells, S. Afr. J. Chem, 68 (2015).




DOI: https://doi.org/10.15625/2525-2518/57/1/12801 Display counter: Abstract : 236 views. PDF : 153 views.

Refbacks

  • There are currently no refbacks.


Index: Google Scholar; Crossref; VCGate; Asean Citation Index

Published by Vietnam Academy of Science and Technology