Isolation and identification of indole acetic acid producing bacteria from the coasts of Ben Tre and Tra Vinh Provinces

Nguyen Ngoc Lan, Vu Van Dzung, Nguyen Thi Kim Lien, Nguyen Kim Thoa, Do Huu Nghi, Nguyen Huy Hoang

Abstract


Beneficial plant-growth-promoting bacteria (PGPB) have been reasonably applied to rescue crucial issue for agriculture by salinity soil. Observed most of PGPB was found in endophyte, rhizosphere and soil. Indole acetic acid (IAA)-producing bacteria could naturally stimulate and facilitate plant growth. The knowledge of IAA production and content of bacteria resident in the marine environment has been typically insufficient and limited to date. In recent years, unwarrantable intrusions of sea water have been enlarged in the Mekong River Delta of Vietnam, threatening productive rice fields, local fruits, and cash crops. Therefore, finding PGPB in the coastal regions in the Mekong River Delta as a creative resource for sustainable agriculture is necessary and is a prompt challenge. In this study, IAA-producing bacteria from coastal regions of Ben Tre and Tra Vinh Provinces were isolated and adequately identified. Out of 202 bacterial isolates, 10 isolates showed the possible ability to produce IAA from L-tryptophan. These 10 isolates were objectively evaluated the capacity to produce IAA under 5% (w/v) NaCl in King B and marine broths. The results revealed that IAA production decreased in 5% NaCl, even though bacterial growth increased. These 10 IAA-producing bacteria were classified at the species level, Marinobacter hydrocarbonoclasticus, M. pelagius, M. daepoensis, and Mameliella phaeodactyli by 16S rRNA gene analysis. The most IAA producer in King’s B broth, the isolate C7, was investigated in more detail. The isolate C7 produced the maximum IAA amount (192.2 ± 1.14 µg/ml) under the presence of 20 g/l yeast extract, 2 g/l of L-tryptophan and 1% NaCl. The isolate C7 was able to grow at 1–17% (w/v) NaCl (optimum, 4%), but not in the absence of NaCl, indicating it is a moderate halophilic bacteria. This study highlighted the considerable ability to produce IAA of marine bacteria, which could be thoughtfully considered to use naturally as biofertilizers to promote plant growth in saline intrusion lands.

 


Keywords


IAA producing bacteria, marine, Marinobacter, Mameliella, C7, halophile.

References


Balaji N., Lavanya S. S., Muthamizhselvi S., Tamilarasan K., 2012. Optimization of fermentation condition for indole acetic acid production by Pseudomonas species. Int. J. Adv. Biotechnol. Res., 2012;3: 797–803.

Bar T., and Okon Y., 1993. Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense sp7. Can. J. Microbiol., 39(1): 81–86.

Blunt J. W., Carroll A. R., Copp B. R., Davis R. A., Keyzers R. A., Prinsep M. R. Munro M H., Northcote P. T., Prinsep M. R., 20112018. Marine natural products. Nat. Prod. Rep., 2835(21): 1968–26853.

Calado R., Leal M. C., Gaspar H., Santos S., Marques A., Nunes M. L., Vieira Het al., 2018. How to succeed in marketing marine natural products for pharmaceutical, cosmetics & nutraceutical markets. In: Rampelotto PH, & Trincone A (eds) Grand Challenges in Marine Biotechnology. Springer, Cham, Switzerland, pp. 317–403.

CGIAR research centers in Southeast Asia, 2016. The drought and salinity intrusion in the Mekong River Delta of Vietnam: assessment report.

De Carvalho C., and Fernandes P., 2010. Production of metabolites as bacterial responses to the marine environment. Mar. Drugs., 8(3): 705–727.

Dimkpa C. O., Zeng J., McLean J. E., Britt D. W., Zhan J., Anderson A. J., 2012. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol., 78(5): 1404–1410.

Dong R., Zhang J., Huan H., Bai C., Chen Z., Liu G., 2017. High salt tolerance of a Bradyrhizobium strain and its promotion of the growth of Stylosanthes guianensis. Int. J. Mol. Sci., 18(8): 1625.

Fahad S., Hussain S., Matloob A., Khan F. A., Khaliq A., Saud S., Hassan S., Shan D., Khan F., Ullah N., Faiq M., 2015. Phytohormones and plant responses to salinity stress: a review. Plant. Growth. Regul., 75(2): 391–404.

Farag S., Soliman N. A., Abdel-Fattah Y. R., 2018. Statistical optimization of crude oil bio-degradation by a local marine bacterium isolate Pseudomonas sp. sp48. J. Genet. Eng. Biotechnol., 16(2): 409–420.

Glickmann E., Dessaux Y., 1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol., 61(2): 793–796.

Goswami D., Patel K., Parmar S., Vaghela H., Muley N., Dhandhukia P., Thakker J. N., 2015. Elucidating multifaceted urease producing marine Pseudomonas aeruginosa BG as a cogent PGPR and bio-control agent. Plant. Growth. Regul., 75(1): 253–263.

Goswami D., Vaghela H., Parmar S., Dhandhukia P., Thakker J. N., 2013. Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. J. Plant. Interact., 8(4): 281–290.

Hammes W., Schleifer K. H., Kandler O., 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol., 116(2): 1029–1053.

Hishinuma F., Izaki K., Takahashi H., 1969. Effects of glycine and D-amino acids on growth of various microorganisms. Agri. Biol. Chem., 33(11): 1577–1586.

Imada E. L., de Oliveira A. L. M., Hungria M., Rodrigues E. P., 2017. Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Res. Microbiol., 168(3): 283–292.

Kobayashi M., Suzuki T., Fujita T., Masuda M., Shimizu S., 1995. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc. Natl. Acad. Sci. U S A., 92(3): 714–718.

Kushner D. J., 1978. Microbial life in extreme environments. Academic Press.

Li M., Guo R., Yu F., Chen X., Zhao H., Li H., Wu J., 2018. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. Int. J. Mol. Sci., 19(2): 443.

Li Y., Liu B., Guo J., Cong H., He S., Zhou H., Zhu F., Wang Q., Zhang L., 2019. L-Tryptophan represses persister formation via inhibiting bacterial motility and promoting antibiotics absorption. Future. Microbiol., 14(9): 757–771.

Mahjoubi M., Cappello S., Souissi Y., Jaouani A., Cherif, A., 2018. Microbial bioremediation of petroleum hydrocarbon–contaminated marine environments.. In: Zoveidavianpoor M (Ed) Recent Insights in Petroleum Science and Engineering, , 325.InTech, London, UK, pp. 325–350.

Mashiguchi K., Hisano H., Takeda K. N., Takebayashi Y., Ariizumi T., Gao Y., Ezura H., Sato K., Zhao Y., Hayashi K. I., Kasahara H., 2018. Agrobacterium tumefaciens enhances biosynthesis of two distinct auxins in the formation of crown galls. Plant. Cell. Physiol., 60(1): 29–37.

Mohapatra B. R., Bapuji M., Sree A., 2003. Production of industrial enzymes (amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms. Acta. Biotechnol., 23(1): 75–84.

Mohite B., 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil. Sci. Plant. Nutr., 13(3): 638–649.

Nayomi J., Thangavel M., 2015. Isolation, screening and identification of marine bacteria for the plant grwoth promoting activites. Glob. J. Res. Anal., 4(11): 65–68.

Nguyen Khoi Nghia, Tran Thi My Tien, Nguyen Thi Kieu Oanh, Nguyen Hoang Kim Nuong., 2017. Isolation and characterization of indole acetic acid producing halophilic bacteria from salt affected soil of rice–shrimp farming system in the Mekong Delta, Vietnam. Agriculture, Forestry and Fisheries., 6 (3): 69–77.

Nguyen Van Minh, Dinh Thi Hien, Nguyen Bich Hoa, Nguyen Thi Mai Thi, Vo Ngoc Yen Nhi, Duong Nhat Linh, Nguyen Bao Quoc., 2017. Screening of salt tolerant bacteria for plant growth promotion activities and biological control of rice blast and sheath blight disease on mangrove rice. Vietnam. J. Sci. Technol., 55(1A): 54–64.

Nutarata P., Monprasit A., Srisuk N., 2017. High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3. Biotech., 7: 305.

Oberhänsli T., Défago G., Haas D., 1991. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of P. fluorescens: role of tryptophan side chain oxidase. Microbiology, 137(10): 2273–2279.

Othman R., Naher U. A., Yusoff S .Z., 2013. Effect of urea-N on growth and indoleacetic acid production of Stenotrophomonas maltophilia (Sb16) isolated from rice growing soils in Malaysia. Chil. J. Agr. Res., 73(2):

–192.

Park J. M., Radhakrishnan R., Kang S. M., Lee, I. J., 2015. IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Ind. J. Microbiol., 55(2):

–212.

Patten C. L., and Glick B. R., 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68(8): 3795–3801.

Prinsen E., Costacurta A., Michiels K., Vanderleyden J., Van Onckelen H., 1993. Azirospirillum brasilense indole-3-acetic acid biosynthesis: Evidence for a non-tryptophan dependent pathway. Mol. Plant. Microbe. Interact., 6: 609–615.

Sekine M., Ichikawa T., Kuga N., Kobayashi M., Sakurai A., Syōno K., 1988. Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant. Cell. Physiol., 29(5): 867–874.

Siddikee M. A., Chauhan P. S., Anandham R., Han G. H., Sa, T., 2010. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J. Microbiol. Biotechnol., 20(11): 1577–1584.

Spaepen S., Vanderleyden J., Remans R., 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS. Microbiol. Rev., 31(4): 425–448.

Tran Bao Tram, Nguyen Ngoc Lan, Pham Huong Son, Pham The Hai, 2018. Biotransformation of ginsenoside Rb1 by bacterial crude enzyme of Paenibacillus spp. strain E3 isolated from Vietnamese ginseng soil. Vietnam. Academy. J. Biology., 40(3): 82–89.

Trincone A., 2011. Marine biocatalysts: enzymatic features and applications. Mar. Drugs., 9(4): 478–499.

Tsavkelova E. A., Klimova S. Y., Cherdyntseva T. A., Netrusov A. I., 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol., 42(2): 117–126.

Uchgaonkar P., Padmadas N., Singh S., Dasgupta D., 2018. Screening and identification of siderophore producing marine bacteria. Global. J. Biosci. Biotechnol., 7(3): 457–461.

Urbanek A. K., Rymowicz W., Mirończuk A. M., 2018. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol., 102(18): 7669–7678.

Ventosa A., Nieto J. J., Oren A., 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev., 62(2): 504–544.

Wagi S., Ahmed A., 2019. Bacillus spp.: potent microfactories of bacterial IAA. PeerJ., 7: e7258.

Wiese J., Imhoff J. F., 2019. Marine bacteria and fungi as promising source for new antibiotics. Drug. Dev. Res., 80(1): 24–27.

Xu X. W., Wu Y. H., Wang C. S., Yang J. Y., Oren A., Wu M., 2008. Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int. J. Syst. Evol. Microbiol., 58(30): 637–640.




DOI: https://doi.org/10.15625/0866-7160/v41n4.13869 Display counter: Abstract : 52 views.

 

                 

Editorial Office:

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 24 3791 7101

Email: tapchisinhhoc@vjs.ac.vn