Synthesis of gelatin stabilized gold nanoparticles with seed particles enlargement by gamma Co-60 irradiation

Nguyen Ngoc Duy, Doan Thi Thu Thao, Hoang Thi Dong Quy, Dang Van Phu, Bui Duy Du, nguyen Quoc Hien


Gold nanoparticles (AuNPs) with size from 13 to ~36 nm were synthesized by γ-irradiation method using gelatin as stabilizer. The AuNPs with controllable size were prepared using various concentration of Au3+ from 0.5 to 2 mM and seed particle enlargement with different ratios of [Au3+]/[Auo] up to 50. Maximum absorption wavelength (λmax) was measured by UV-Vis spectroscopy, and particle size was determined from TEM images. Results showed that the size of AuNPs increased with the Au3+ concentration. The seed enlargement approach is efficient to control the size of AuNPs. The value of λmax shifted from 527.5 nm (seed particles) to 537.5 nm, and the size of AuNPs increased from 13 nm (seed particles) to ~36 nm for concentration ratio of [Au3+]/[Auo] up to 40. Thus, γ-irradiation method is favorable for production of AuNPs with controllable size and high purity. The AuNPs/gelatin synthesized by γ-irradiation with the advantages of environmental friendly and mass production process may be potentially promising for applications in medicines, cosmetics and in other fields as well.

Keywords. Gold, Nanoparticles, Gelatin, γ-irradiation.


Gold, Nanoparticles, Gelatin, γ-irradiation.

Full Text:



I. H. El-Sayed, X. Huang, M. A. El-Sayed. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett., 239, 129-135 (2006).

I. L. Maksimova,, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, V. V. Tuchin. Near-infrared laser photothermal of cancer by using gold nanoparticles: Computer silmulations and experiment, Med. Laser Appl., 22, 199-206 (2007).

K. Esumi, N. Takei, T. Yoshimura. Antioxidant-potentiality of gold-chitosan nanocomposites, Coll. Surf. B: Biointerfaces, 32, 117-123 (2003).

N. O. Yakimovic, A. A. Ezhevskim, D. V. Guseinov, L. A. Smirnova, T. A. Gracheva, K. S. Klychkov. Antioxidant properties of gold nanoparticles study by ESR spectroscopy, Russ. Chem. Bull., 57, 520-523 (2008).

J. Kim, Z. Dohnalek, B. D. Kay. Cryogenic CO2 formation on oxidized gold clusters synthesized via reactive layer assisted deposition, J. Am. Chem. Soc., 127, 14592-14593 (2005).

W. S. Cho et al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles, Toxicol. Appl. Pharmacol., 245, 116-123 (2010).

H. Huang, X. Yang. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method, Carbohydr. Res., 339, 2627-2631 (2004).

T. K. Sau, A. Pal, N. R. Jana, Z. L. Wang, T. Pal. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles, J. Nanopart. Res., 3, 257-261 (2001).

K. Okitsu, Y. Mizukoshi, T. A. Yamamoto, Y. Maeda, Y. Nagata. Sonochemical synthesis of gold nanoparticles on chitosan, Mater. Lett., 61 3429-3431 (2007).

A. Henglein, D. Meisel. Radiolytic control of the size of colloidal gold nanoparticles, Langmuir 14, 7392-7396 (1998).

N. T. Anh, D. V. Phu, N. N. Duy, B. D. Du, N. Q. Hien. Synthesis of alginate stabilized gold nanoparticles by g-irradiation with controllable size using different Au3+ concentration and seed particles enlargement, Rad. Phys. Chem., 79, 405-408 (2010).

N. Q. Hien, D. V. Phu, N. N. Duy, L. A. Quoc. Radiation synthesis and characterization of hyaluronan capped gold nanoparticles, Carbohyd. Polym., 89, 537-541 (2012).

A. G. Chmielewski, D. K. Chmielewska, J. Michalik, M. H. Sampa. Prospects and challenges in application of gamma, electron and ion beams in processing of nanomaterials, Nucl. Inst. Meth. Phys. Res. B, 265, 347-351 (2007).

T. Liu, J. Tang, L. Jiang. Enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity, Biochem. Biophys. Res. Commun., 313, 3-7 (2004).

Y. C. Yang, C. H. Wang, Y. K. Hwu, J. Ho. Je. Synchrotron X-ray synthesis of colloidal gold particles for drug delivery, Mater. Chem. Phys., 100, 72-76 (2006).

N. N. Duy, D. Xu. Du, D. V. Phu, L. A. Quoc, B. D. Du, N. Q. Hien. Synthesis of gold nanoparticles with seed enlargement size by -irradiation and investigation of antioxidant activity, Coll. Surf. A: Physicochem. Eng. Aspects, 426, 633-638 (2013).

S. T. Hussain, M. Iqbal, M. Mazhar. Size control synthesis of starch capped gold nanoparticles, J. Nanopart. Res. 11, 1383-1391 (2009).

C. C. Wu, D. H. Chen. Facile green synthesis of gold nanoparticles with gum Arabic as a stabilizing agent and reducing agent, Gold Bull. 43, 234-240 (2010).

Y. Guo, H. Yan. Preparation and characterization of heparin-stabilized gold nanoparticles, J. Carbohydr. Chem., 27, 309-319 (2007).

Y. Liu, X. Liu, X. Wang. Biomimetic synthesis of gelatin polypeptide-assisted noble metal nanoparticles and their interaction study, Nanoscale Res. Lett., 6, 22 (2011).

M. Darroudi, M. B. Ahmad, M. Hakimi, R. Zamiri, A. K. Zak, H. A. Hosseini, M. Zargar. Preparation, characterization, and antibacterial activity of -irradiated silver nanoparticles in aqueous gelatin, Int. J. Min. Met. Mater., 20, 403-409 (2013).

ASTM International, Standard practice for use of the ethanol-chlorobenzene dosimetry system. ISO/ASTM 51538:2002(E), Standards on dosimetry for radiation processing, 2004, p. 87.

Display counter: Abstract : 82 views. PDF : 82 views.