Mg-Al hydrotalcites as solid base catalysts for transformation of glucose to fructose

Pham Anh Son, Kieu Thanh Canh


In this research, Mg-Al hydrotalcite compounds (HTs) are fabricated by constant pH at low supersaturation method. The prepared HTs act as solid base catalysts for the transformation of glucose to fructose in water medium. The activities of catalysts are monitored versus reaction temperature and time to find the optimum conditions. Under 120 oC and 20 min, the best catalyst is HT5 with maximum fructose yield of 16.3 %. The HT5 catalyst is tested for the heterogeneous nature and recyclability. The obtained results show that HT5 is true solid base catalyst. HT5 can be recovered easily and reuse several times with slight decrease in its activity. The deposition of organic residue on the surface of HT5 grains is blamed for the depletion of catalytic activity. In the regeneration process, HT5 undergoes a thermal treatment at 500 oC for 4 h in air to remove completely the contaminations. During that process, HT5 disassociates into MgO and Al2O3 before reconstruction stage in water medium to come back original structure of hydrotalcite. The reconstruction of HT5 can repeat many times proving that hydrotalcites are structure-memory materials. The activity of regenerated HT5 can be comparable to that of fresh catalyst.

Keywords. Glucose, fructose, isomerization reaction, hydrotalcite, solid base catalyst.


Glucose, fructose, isomerization reaction, hydrotalcite, solid base catalyst

Full Text:



A. Corma, S. Iborra and A. Velty. Chemical Routes for the Transformation of Biomass into Chemicals, Chem. Rev., 107, 2411-2502 (2007).

M. E. Zakrzewska, E. Bogel-Lukasik and R. Bogel-Lukasik. Ionic Liquid mediated Formation of 5-Hydroxymethylfurfural - A Promising Biomass-derived Building Block, Chem. Rev., 111, 397-417 (2011).

J. C. Escobar, E. S. Lora, O. J. Venturini, E. E. Yanez, E. F. Castillo and O. Almazan. Biofuels: Environment, Technology and Food Security, Renew. Sustain. Energy Rev., 13, 1275-1287 (2009).

J. P. M. Sanders, J. H. Clark, G. J. Harmsen, H. J. Heeres, J. J. Heijnen, S. R. A. Kersten, W. P. M. van Swaaij and J. A. Moulijn. Process Intensification in the Future Production of Base Chemicals from Biomass, Chem. Eng. Process., 51, 117-136 (2012).

X. Tong, Y. Ma and Y. Li. Biomass into Chemicals: Conversion of Sugars to Furan Derivatives by Catalytic Processes, Appl. Catal. A: Gen, 385, 1-13 (2010).

J. C. Serrano-Ruiz, A. Pineda, A. M. Balu, R. Luque, J. M. Campelo, A. A. Romero and J. M. Ramos-Fernandez. Catalytic Transformations of Biomass-derived Acids into Advanced Biofuels, Catal. Today, 195, 162-168 (2012).

A. Takagaki, M. Ohara, S. Nishimura and K. Ebitani. A One-pot Reaction for Biorefinery: Combination of Solid Acid and Base Catalysts for Direct Production of 5-Hydroxymethylfurfural from Saccharides, Chem. Commun., 41, 6276-6278 (2009).

M. Ohara, A. Takagaki, S. Nishimura and K. Ebitani. Syntheses of 5-Hydroxymethylfurfural and Levoglucosan by Selective Dehydration of Glucose Using Solid Acid and Base Catalysts, Appl. Catal. A: Gen., 383, 149-155 (2010).

Kl. Beckerle and J. Okuda. Conversion of Glucose and Cellobiose into 5-Hydroxymethylfurfural (HMF) by Rare Earth Metal Salts in N,N-dimethylacetamide (DMA), J. Mol. Catal. A: Chem., 356, 158-164 (2012).

J. Jow, G. L. Rorrer and M. C. Hawley. Dehydration of D-fructose to Levulinic Acid over LZY Zeolite Catalyst, Biomass, 14, 185-194 (1987).

W. Zeng, D. G. Cheng, H. Zhang, F. Chen and X. Zhan. Dehydration of Glucose to Levulinic Acid over MFI-type Zeolite in Subcritical Sater at Moderate Conditions, Reac. Kinet., Mech. Catal., 100, 377-384 (2010).

P. A. Son, S. Nishimura and K. Ebitani. Synthesis of Levulinic Acid from Fructose using Amberlyst-15 as a Solid Acid Catalyst, Reac. Kinet., Mech. Catal., 106, 185-192 (2012).

S. H. Bhosale, M. B. Rao and V. V. Deshpande. Molecular and Industrial Aspects of Glucose Isomerase, Microbio. Rev., 60, 280-300 (1996).

Y. Zhang, K. Hidajat and A. K. Ray. Optimal Design and Operation of SMB Bioreactor: Production of High Fructose Syrup by Isomerization of Glucose, Biochem. Eng. J., 21, 111-121 (2004).

C. Kooyman, K. Vellenga and H. G. J. De Wilt. The Isomerization of D-glucose into D-fructose in Aqueous Alkaline Solutions, Carbohydr. Res., 54, 33-44 (1977).

M. Watanabe, Y. Aizawa, T. Iida, R. Nishimura and H. Inomata. Catalytic Glucose and Fructose Conversions with TiO2 and ZrO2 in Water at 473 K: Relationship between Reactivity and Acid-Base Property Determined by TPD Measurement, Appl. Catal. A: Gen., 295, 150-156 (2005).

B. Y. Yang and R. Montgomery. Alkaline Degradation of Glucose: Effect of Initial Concentration of Reactants, Carbohydr. Res., 280, 27-45 (1996).

N. T. Thao, D. V. Long. Oxidation of Styrene Over Molybdenum-Containing Hydrotalcite Catalysts, Vietnam Journal of Chemistry, 54(4), 454-458 (2016).

N. T. Thao, N. M. Hieu, D. V. Long. Reaction of Styrene with H2O2 Catalyzed by Mg-Co-Al-CO3 Hydrotalcites, Vietnam Journal of Chemistry, 53(6E1), 396-400 (2015).

N. T. Thao, L. T. K. Huyen. Catalytic Activity of Mg-Cu-Al Hydrotalcite Catalysts in the Oxidation of Styrene, Vietnam Journal of Chemistry, 53(4), 64-68 (2015).

P. A. Son, K. T. Canh, D. T. Lan. Preparation and Characteristics of Solid Base Hydrotalcite, Vietnam Journal of Chemistry, 54(2), 238-243 (2016).

B. Y. Yang and R. Montgomery. Alkaline Degradation of Glucose: Effect of Initial Concentration of Reactants, Carbohydr. Res., 280, 27-45 (1996).

G. De Wit, A. P. G. Kieboom and H. van Bekkum. Enolisation and Isomerisation of Monosaccharides in Aqueous, Alkaline Solution, Carbohydr. Res., 74, 157-175 (1979).

Y. Roman-Leshkov, M. Moliner, J. A. Labinger and M. E. Davis. Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water, Angew. Chem. Int. Ed., 49, 8954-8957 (2010).

Display counter: Abstract : 90 views. PDF : 38 views.