Effect of chromium substituted on structural and magnetic characterization lithium ferrite nanoparticles

Nguyen Thi Lan, Phuong Dinh Tam, Nguyen Phuong Duong, Than Duc Hien


In this work, we present a structural, morphology and magnetic study of the Li0.5Fe2.5-xCrxO4 spinel nanoparticles (x = 0, 0.5, 0.75, 1, and 1.25) with mean particle size of 20-30 nm prepared by sol-gel method. The lattice constants and the size of particle decrease with increasing Cr concentration. In these samples, the preference of Cr3+ and Li+ ions in the octahedral sites and a small degree of site-interchange between Li+ in the octahedral sites and Fe3+ in the tetrahedral sites were found which increases with increasing the Cr content. A decrease of magnetization due to the spin disorder in the surface layer of the particles was observed. The spontaneous magnetization at 5K suggests the Néel type of magnetic ordering in these samples. The magnetic coercivity is discussed in terms of particle size, morphology and chromium substitution.

Keywords. Chromium substitution, sol-gel method, nanoparticles, lithium ferrite.


Chromium substitution, sol-gel method, nanoparticles, lithium ferrite.

Full Text:



A. Goldman. Modern Ferrite Technology 2nd Ed. Springer Science, Pittsburgh, PA, USA (2006).

J. Nicolas. Microwave ferrites, Ferromagnetic Materials Vol. 2, Chapter 3 ed. E.P. Wohlfarth, North Holland (1980).

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496-499 (2000).

S. Krupička and P. Novák. Oxide spinels, Ferromagnetic Materials Vol. 3, Chapter 4 ed. E.P. Wohlfarth, North Holland (1980).

N. K. Gill and R. K. Puri. Spectrochim. Acta A. 41, 1005 (1985).

J. L. Dormann, A. Thomas and M. Nogues, Phys. Stat. Sol. (a), 77, 611 (1983).

M. V. Kuznetsov, Q. A. Pankhurst and I. P. Parkin. Self-propagating high-temperature synthesis of lithium-chromium ferrites Li0.5Fe2.5-xCrxO4, J. Phys D: Appl. Phys., 31, 2886 (1998).

H. Yang, L. Shen, L. Zhao, L. Song, J. Zhao, Z. Wang, L. Wang, D. Zhang. Magnetic properties of nanocrystalline Li0.5Fe2.1Cr0.4O4 ferrite, Mater. Lett., 57, 2455 (2003).

A. Rais, A. M. Gismelseed and I.A. Al-Omari. On the magnetic compensation effect of lithium-chromium ferrites Li0.5CrxFe2.5–xO4 (0 ≤ x ≤ 1.55), Phys. Stat. Sol. (b), 242, 2949 (2005).

S. Dey, A. Roy, D. Das, J. Ghose, Preparation and characterization of nanocrystalline disordered lithium ferrite by citrate precursor method, J. Magn. Magn. Mater., 270, 224 (2004).

Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D, 36, R167 (2003).

M. Shinkai, Functional magnetic particles for medical application, J. Biosci. Bioeng., 94, 606 (2002).

S. Verma and P. A. Joy, Magnetic properties of

superparamagnetic lithium ferrite nanoparticles, J. Appl. Phys., 98, 124312 (2005).

K. P. Chae, Y. B. Lee, J. G. Lee, S. H. Lee. Crystallographic and magnetic properties of CoCrxFe2−xO4 ferrite powders, J. Magn. Magn. Mater., 220, 59 (2000).

B. D. Cullity. Elements of X-Ray Diffraction, 2nd ed. Addison-Wesley, Reading, MA, 1978.

P. N. Vasambekar, C. B. Kolekar, A. S. Vaingankar. Cation distribution and susceptibility study of Cd–Co and Cr3+ substituted Cd–Co ferrites, J. Magn. Magn. Mater., 186, 333 (1998).

J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis, E. Devlin and A. Kostikas. Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation, Phys. Rev. B, 54, 9288 (1996).

E. W. Gorter and J. A. Schulkes. Reversal of Spontaneous Magnetization as a Function of Temperature in LiFeCr Spinels, Phys. Rev., 89, 487 (1953).

A. M. Samy, A. A. Sattar, Ibrahim Hassan Afify. Effect of substitution with potassium and chromium oxides on the magnetic and electrical properties of Li-ferrite, J. Alloy. Comp., 505, 297-301 (2010).

Display counter: Abstract : 108 views. PDF : 62 views.