Open Access Open Access  Restricted Access Subscription Access

Atomistic simulation of the uniaxial compression of black phosphorene nanotubes

Van-Trang Nguyen, Minh-Quy Le


We study through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of (0, 24) armchair and (31, 0) zigzag black phosphorene nanotubes with approximately equal diameters. Young's modulus, critical stress and critical strain are estimated with various tube lengths. It is found that under uniaxial compression the (0, 24) armchair black phosphorene nanotube buckles, whereas the failure of the (31, 0) zigzag one is caused by local bond breaking near the boundary.


atomistic simulation; compression; mechanical properties; phosphorene nanotubes

Full Text:



T. Hu, Y. Han, and J. Dong. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology, 25, (45), (2014). doi:10.1088/0957-4484/25/45/455703.

C.-X. Wang, C. Zhang, J.-W. Jiang, H. S. Park, and T. Rabczuk. Mechanical strain effects on black phosphorus nanoresonators. Nanoscale, 8, (2), (2016), pp. 901–905. doi:10.1039/c5nr06441d.

Z.-D. Sha, Q.-X. Pei, Z. Ding, J.-W. Jiang, and Y.-W. Zhang. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. Journal of Physics D: Applied Physics, 48, (39), (2015). doi:10.1088/0022-3727/48/39/395303.

Z. Yang, J. Zhao, and N. Wei. Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations. Applied Physics Letters, 107, (2), (2015). doi:10.1063/1.4926929.

W.-H. Chen, C.-F. Yu, I.-C. Chen, and H.-C. Cheng. Mechanical property assessment of black phosphorene nanotube using molecular dynamics simulation. Computational Materials Science, 133, (2017), pp. 35–44. doi:10.1016/j.commatsci.2017.03.008.

K. Cai, J.Wan, N.Wei, and Q. H. Qin. Strength and stability analysis of a single-walled black phosphorus tube under axial compression. Nanotechnology, 27, (27), (2016). doi:10.1088/0957-4484/27/27/275701.

R. Ansari, A. Shahnazari, and S. Rouhi. A density-functional-theory-based finite element model to study the mechanical properties of zigzag phosphorene nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 88, (2017), pp. 272–278. doi:10.1016/j.physe.2017.01.022.

V. Sorkin and Y. Zhang. Mechanical properties of phosphorene nanotubes: a density functional tight-binding study. Nanotechnology, 27, (39), (2016). doi:10.1088/0957-4484/27/39/395701.

V.-T. Nguyen, D.-T. Nguyen, and M.-Q. Le. Atomistic simulation of the uniaxial tension of black phosphorene nanotubes. Vietnam Journal of Mechanics, (2018). doi:10.15625/0866-7136/10751.

Y. Takao, H. Asahina, and A. Morita. Electronic structure of black phosphorus in tight binding approach. Journal of the Physical Society of Japan, 50, (10), (1981), pp. 3362–3369. doi:10.1143/jpsj.50.3362.

J.-W. Jiang. Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology, 26, (31), (2015). doi:10.1088/0957-4484/26/31/315706.

D.-T. Nguyen, M.-Q. Le, V.-T. Nguyen, and T.-L. Bui. Effects of various defects on the mechanical properties of black phosphorene. Superlattices and Microstructures, 112, (2017), pp. 186–199. doi:10.1016/j.spmi.2017.09.021.



  • There are currently no refbacks.

Copyright (c) 2018 Vietnam Academy of Science and Technology



Editorial Office of Vietnam Journal of Mechanics

3rd Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 24 3791 7103