On the estimates for the elastic moduli of random Voronoi triclinic polycrystals
Abstract
Keywords
Full Text:
PDFReferences
W. Voigt. Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik). Teubner, Leipzig, (1928).
A. Reuß. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9, (1), (1929), pp. 49–58. https://doi.org/10.1002/zamm.19290090104.
R. Hill. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65, (5), (1952), p. 349. https://doi.org/10.1088/0370-1298/65/5/307.
Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behavior of polycrystals. Journal of the Mechanics and Physics of Solids, 10, (4), (1962), pp. 343–352. https://doi.org/10.1016/0022-5096(62)90005-4.
R. Zeller and P. H. Dederichs. Elastic constants of polycrystals. Physica Status Solidi, 55, (2), (1973), pp. 831–842. https://doi.org/10.1002/pssb.2220550241.
M. W. M. Willemse and W. J. Caspers. Electrical conductivity of polycrystalline materials. Journal of Mathematical Physics, 20, (8), (1979), pp. 1824–1831. https://doi.org/10.1063/1.524284.
E. Kroner. Graded and perfect disorder in random media elasticity. Journal of the Engineering Mechanics Division, 106, (5), (1980), pp. 889–914.
J. J. McCoy. Macroscopic response of continua with random microstructures. In Mechanics Today, pp. 1–40. Elsevier, (1981). https://doi.org/10.1016/b978-0-08-024749-6.50012-0.
P. D. Chinh. Bounds on the effective shear modulus of multiphase materials. International Journal of Engineering Science, 31, (1), (1993), pp. 11–17. https://doi.org/10.1016/0020-7225(93)90060-8.
P. D. Chinh. On the scatter ranges for the elastic moduli of random aggregates of general anisotropic crystals. Philosophical Magazine, 91, (4), (2011), pp. 609–627. https://doi.org/10.1080/14786435.2010.528459.
P. D. Chinh. Bounds on the elastic moduli of statistically isotropic multicomponent materials and random cell polycrystals. International Journal of Solids and Structures, 49, (18), (2012), pp. 2646–2659. https://doi.org/10.1016/j.ijsolstr.2012.05.021.
J. M. Brown. Determination of Hashin–Shtrikman bounds on the isotropic effective elastic moduli of polycrystals of any symmetry. Computers & Geosciences, 80, (2015), pp. 95–99. https://doi.org/10.1016/j.cageo.2015.03.009.
C. M. Kube and A. P. Arguelles. Bounds and self-consistent estimates of the elastic constants of polycrystals. Computers & Geosciences, 95, (2016), pp. 118–122. https://doi.org/10.1016/j.cageo.2016.07.008.
D. C. Pham, C. H. Le, and T. M. H. Vuong. Estimates for the elastic moduli of d-dimensional random cell polycrystals. Acta Mechanica, 227, (10), (2016), pp. 2881–2897. https://doi.org/10.1007/s00707-016-1653-y.
M. Nygårds. Number of grains necessary to homogenize elastic materials with cubic symmetry. Mechanics of Materials, 35, (11), (2003), pp. 1049–1057. https://doi.org/10.1016/s0167-6636(02)00325-3.
S. I. Ranganathan and M. Ostoja-Starzewski. Scaling function, anisotropy and the size of RVE in elastic random polycrystals. Journal of the Mechanics and Physics of Solids, 56, (9), (2008), pp. 2773–2791. https://doi.org/10.1016/j.jmps.2008.05.001.
J. Besson, G. Cailletaud, J.-L. Chaboche, and S. Forest. Non-linear mechanics of materials, Vol. 167. Springer Science & Business Media, (2009).
M. R. Murshed and S. I. Ranganathan. Hill–Mandel condition and bounds on lower symmetry elastic crystals. Mechanics Research Communications, 81, (2017), pp. 7–10. https://doi.org/10.1016/j.mechrescom.2017.01.005. [
A. G. Every and A. K. McCurdy. Second and higher-order elastic constants. In Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series Group III: Crystal and Solid State Physics, Springer-Verlag, Berlin, Vol. 29, (1992), pp. 1–743.
S. I. Ranganathan and M. Ostoja-Starzewski. Universal elastic anisotropy index. Physical Review Letters, 101, (5), (2008). https://doi.org/10.1103/PhysRevLett.101.055504.
DOI: https://doi.org/10.15625/0866-7136/14795 Display counter: Abstract : 97 views. PDF : 62 views.
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Vietnam Academy of Science and Technology
Editorial Office of Vietnam Journal of Mechanics 3rd Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, VietnamTel: (+84) 24 3791 7103 Email: vjmech@vjs.ac.vn |