Generation of Maximally Entangled States by a Kerr-like Nonlinear Coupler Interacting with External Fields

Doan Quoc Khoa, Luong Thi Tu Oanh, Chu Van Lanh, Nguyen Thi Dung, Do Hong Son


We study a model with two nonlinear oscillators (Kerr-like nonlinear coupler) pumped by two external coherent fields as a nonlinear quantum scissor (NQS). Using the numerical simulation method introduced before for quantum state engineering in NQS of such type, we obtain the wave function describing the evolution of the system as a combination of n-photon states. Considered NQS generates a truncation of optical states that leads to achieve two-qubit states due to the nonlinear properties of oscillators and their interaction. In particular, evolution of the system generates maximally entangled states as so-called Bell-like states. We will show that a proper choice of initial conditions for such evolution implies the increase of efficiency of entanglement creation process. We consider our model for both damping and without damping cases.


03.65.Ud, 42.50.Dv

Full Text:



A. Steane, Rep. Prog. Phys. 61 (1998) 117.

R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81 (2009) 865.

J. I. Chirac and P. Zoller, Phys. Rev. Lett. 74 (1995) 4091.

D. Loss and D. P. DiVincenzo, Phys. Rev. A 57 (1998) 120.

J. Vidal, G. Palacios and C. Aslangul, Phys. Rev. A 70 (2004) 062304.

D. Bouwmeester, A. Ekert and A. Zeilinger, The Physics of Quantum Information, Berlin Springer, Press, 2000.

D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman and J.

D. Franson, J. Mod. Opt. 51 (2004) 1499.

A. J. Miller, S. W. Nam, J. M. Martinis and A. V. Sergienko, App. Phys. Lett. 83 (2003) 791.

M. Hamar, J. Perina Jr, O. Haderka and V. Michalek, Phys. Rev. A 81 (2010) 043827.

J. Kim, S. Takeuchi, Y. Yamamoto and H. H. Hogue, App. Phys. Lett. 74 (1999) 902.

M. Bondani, A. Allevi and A. Andreoni, Adv. Sci. Lett. 2 (2009) 463.

A. Kowalewska-Kudlaszyk and W. Leonski, Progress in Optics 56 (2011) 131.

A. Miranowicz and W. Leonski, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 1683.

A. Kowalewska-Kudlaszyk and W. Leonski, Phy. Rev. A 73 (2006) 042318.

A. Kowalewka - Kudlaszyk, W. Leonski and J. Perina Jr, Phys. Rev. A 83 (2011) 052326.

J. K. Kalaga, A. Kowalewska-Kudlaszyk, W. Leonski and A. Barasinski, Phys. Rev. A 94 (2016) 032304.

J. K. Kalaga and W. Leonski, Quantum Information Processing 16 (2017) 175.

J. K. Kalaga, W. Leonski and J. Perina Jr., Phys. Rev. A 97 (2018) 042110.

V. Perinova, A. Luks, J. Krepelka, W. Leonski and J. Perina Jr., Optics Communications 414 (2018) 146.

J. S. Bell, Physics 1 (1964) 195.

A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47 (1935) 777.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press,

M. Hayashi, Quantum information. An introduction, Berlin Heidelberg Springer Press, 2006.

P. Lambropoulos and D. Petrosyan, Fundamentals of quantum optics and quantum information, Berlin Heidelberg

Springer Press, 2007.

L. Diosi, Lecture notes in physics, Berlin Heidelberg, Springer, 2007

G. Jaeger, Quantum information. An overview, Springer Science C Media, LLC New York, 2007.

V. Le Duc and V. Cao Long, Comput. Meth. Sci. Technol. 22 (2016) 245.

W. Leonski and V. Cao Long, Proc. SPIE 8697 (2012) 869728.

G. Jaeger, Phys. Rev. A 18 (2009) 50.

DOI: Display counter: Abstract : 379 views. PDF : 120 views.


  • There are currently no refbacks.

Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 


Copyright by