Vol. 27 No. 2 (2017)
Papers

Synthesis and Optical Characterization of Building-Block Plasmonic Gold Nanostructures

Oanh Thi Tu Nguyen
Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet street, Cau Giay district, Hanoi, Vietnam
Chi Ha Le
Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet street, Cau Giay district, Hanoi, Vietnam
Long Duy Pham
Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet street, Cau Giay district, Hanoi, Vietnam
Hieu Sy Nguyen
Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet street, Cau Giay district, Hanoi, Vietnam
Chung Vu Hoang
Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet street, Cau Giay district, Hanoi, Vietnam

Published 24-08-2017

Keywords

  • plasmonics,
  • chemical synthesis,
  • optical property,
  • nanoparticles,
  • nanorods,
  • random nano-islands
  • ...More
    Less

How to Cite

Nguyen, O. T. T., Le, C. H., Pham, L. D., Nguyen, H. S., & Hoang, C. V. (2017). Synthesis and Optical Characterization of Building-Block Plasmonic Gold Nanostructures. Communications in Physics, 27(2), 131. https://doi.org/10.15625/0868-3166/27/2/9552

Abstract

Plasmonics, the field involves manipulating light at the nanoscale, has been being an emergent research field worldwide. Synthesizing the plasmonic gold nanostructures with controlled morphology and desired optical properties is of special importance towards specific applications in the field. Here, we report the chemical synthesis and the optical properties of various plasmonic Au nanostructures, namely Au nanoparticles (AuNPs), Au nanorods (AuNRs) and random Au nano-islands (AuNI) that are the building blocks for plasmonic research. The results show that the AuNPs exhibited a single plasmonic resonance, the AuNRs displayed two identical and separated modes of the resonance, and the random Au nano-islands presented a very broad resonance. Specifically, tailoring the anisotropy of the Au nanorods enabled extending their resonant frequencies from the visible to the near infrared ones, which is in accordance with the finite different time domain simulations.

Downloads

Download data is not yet available.

References

  1. S. Kawata, Y. Inouye, P. Verma, Nat. Photon. 3 (2009) 388–394.
  2. T. S. Bui, T. D. Dao, L. H. Dang, L. D. Vu, A. Ohi, T. Nabatame, Y. Lee, T. Nagao, C. V. Hoang, Sci. Rep. 6 (2016) 32123.
  3. E. W. McFarland, J. Tang, Nature 421 (2003) 616–618.
  4. M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, H. A. Atwater, Science 346 (2014) 828–831.
  5. M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, Science 332 (2011) 702–704.
  6. M. L. Brongersma, N. J. Halas, P. Nordlander, Nat. Nanotechnol. 10 (2015) 25–34.
  7. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88 (2002) 077402.
  8. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, Science 308 (2005) 1607–1607.
  9. W. L. Barnes, A. Dereux, T. W. Ebbesen, Nature 424 (2003) 824–830.
  10. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, J. J. Baumberg, Science 354 (2016) 726–729.
  11. C. V. Hoang, M. Oyama, O. Saito, M. Aono, Tadaaki Nagao, Sci. Rep. 3 (2013) 1175.
  12. J. Turkevich, P. C. Stevenson & J. Hillier, Discuss. Faraday. Soc. 11 (1951) 55–75.
  13. B. Nikoobakht, M. A. El-Sayed, Chem. Mater. 15 (2003) 1957–1962.
  14. P. Johnson, R. Christy, Phys. Rev. B 6 (1972) 4730–4739.
  15. J. Olson, S. Dominguez-Medina, A. Hoggard, L.-Y. Wang, W.-S. Chang, S. Link, Chem. Soc. Rev. 44 (2015) 40–57.
  16. Novotny, Phys. Rev. Lett. 98 (2007) 266802.
  17. D. Enders, T. Nagao, A. Pucci, T. Nakayama & M. Aono., Phys. Chem. Chem. Phys. 13 (2011) 4935–4941.