Expression of gene encoding flavonol synthase isolating from trung du xanh tea <i>(Camellia sinensis </i> var. <i> macrophylla) </i> in <i> E. coli </i>


  • Hoang Thi Thu Yen
  • Vu Thi Lan
  • Huynh Thi Thu Hue



Camelia sinensis, dihydroquercetin metabolism, flavonol synthase, recombinant FLS.


Common flavonols in plants including quercetin, kaempferol and myricetin are synthesized from dihydroflavonols (dihydroquercetin-DHQ, dihydrokaempferol-DHK and dihydromyricetin-DHM) by flavonol synthase (FLS). In tea, FLS has been shown to metabolize dihydroquercetin to quercetin. The FLS gene was cloned and sequenced from the cultivated tea (Camellia sinensis var. macrophylla) in Thai Nguyen province. In this study, we presented the results of optimizing and designing an expression vector for recombinant FLS (recombinant FLS-rFLS). The FLS gene was ligated completely to the pET32a (+) vector, then expressed in E. coli Rosetta1 and Rosetta2 strain. Using 1mM IPTG to induce the expression of rFLS at 37oC, rFLS was obtained with 52.83 kDa in size and existed predominantly as insoluble form. E. coli Rosetta1 pET32a (+)_FLSproduces rFLS in the soluble fraction than E. coli Rosetta2 pET32a (+)_FLS. Next, E. coli Rosetta1 pET32a (+)_FLSwas optimized for expression at temperatures of 30oC, 23oC and 16oC (24 and 48 hours). After being induced for expression with 1mM IPTG in 48 hours and cultured at 16oC, E. coli Rosetta1 strain containing pET32a (+) FLS produced the largest amount of rFLS in the soluble form.



Download data is not yet available.


Abrahams S., Tanner G. J., Larkin P. J. & Ashton A. R., 2002. Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol., 130(2): 561−576.

Berger M. M., 2005. Can oxidative damage be treated nutritionally? Clinical Nutrition, 24(2): 172−183.

Britsch L., Heller W. & Grisebach H., 1981. Conversion of Flavanone to Flavone, Dihydroflavonol and Flavonol with an Enzyme System from Cell Cultures of Parsley. Z. Naturforsch, 36(c): 742−750.

Butelli E., Titta L., Giorgio M., Mock H. P., Matros A., Peterek S., Schijlen E. G., Hall R. D., Bovy A. G., Luo J. & Martin C., 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol., 26(11): 1301−1308.

Cheng A. X., Han X. J., Wu Y. F. & Lou H. X., 2014. The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int J. Mol. Sci., 15(1): 1080−1095.

Czemmel S., Stracke R., Weisshaar B., Cordon N., Harris N. N., Walker A. R., Robinson S. P. & Bogs J., 2009. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol., 151(3): 1513−1530.

Harbowy M. E. & Balentine D. A., 1997. Tea chemistry. Critical Reviews ill Plant Sciences, 16(5): 415−480.

Havsteen B. H., 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 96(2-3): 67−202.

He X., Zhao X., Gao L., Shi X., Dai X., Liu Y., Xia T. & Wang Y., 2018. Isolation and Characterization of Key Genes that Promote Flavonoid Accumulation in Purple-leaf Tea (Camellia sinensis L.). Sci. Rep., 8(1): 130.

Hoang Thi Thu Yen, Mai Thi Huyen Trang, Pham Thi Hang & Huynh Thi Thu Hue, 2017. Cloning and sequence analysis off gene encoding flavonol synthase from trung du teas growing in Thai Nguyen. Journal of Science VNU, 33(4): 127−136.

Jiang X., Zhang H., Yang J., Liu M., Feng H., Liu X., Cao Y., Feng D. & Xian M., 2013. Induction of gene expression in bacteria at optimal growth temperatures. Appl. Microbiol Biotechnol., 97(12): 5423−5431.

Jiang X., Zhang H., Yang J., Liu M., Feng H., Liu X., Cao Y., Feng D. & Xian M., 2013. Induction of gene expression in bacteria at optimal growth temperatures. Appl. Microbiol. Biotechnol., 97(12): 5423−5431.

Kim Y. B., Kim K., Kim Y., Tuan P. A., Kim H. H., Cho J. W. & Park S. U., 2014. Cloning and characterization of a flavonol synthase gene from Scutellaria baicalensis. Scientific World Journal, 2014: 980740.

Lin G. Z., Lian Y. J., Ryu J. H., Sung M. K., Park J. S., Park H. J., Park B. K., Shin J. S., Lee M. S. & Cheon C. I., 2007. Expression and purification of His-tagged flavonol synthase of Camellia sinensis from Escherichia coli. Protein Expr. Purif., 55(2): 287−292.

Lukacin R. & Britsch L., 1997. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase. Eur. J. Biochem., 249(3): 748−757.

McKay D. L. & Blumberg J. B., 2002. The role of tea in human health: an update. J Am. Coll. Nutr., 21(1): 1−13.

Pietta P. G., 2000. Flavonoids as Antioxidants. Joural of Natural Products, 63(7): 1035−1042.

Schein C. H. & Noteborn M. H. M., 1988. Formation of Soluble Recombinant Proteins in Escherichia Coli is Favored by Lower Growth Temperature. Bio/Technology, 6: 291–294.

Tohge T., de Souza L. P. & Fernie A. R., 2017. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J. Exp. Bot., 68(15): 4013−4028.

Turnbull J. J., Nakajima J., Welford R. W., Yamazaki M., Saito K. & Schofield C. J., 2004. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3beta-hydroxylase. J. Biol. Chem., 279(2): 1206−1216.

Vita J. A., 2005. Polyphenols and cardiovascular disease: effects on endothelial and platelet function. The American Journal of Clinical Nutrition, 81(1): 292−297.

Wang Y. S., Gao L. P., Shan Y., Liu Y. J., Tian Y. W. & Xia T., 2012. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 141: 7–16.

Winkel-Shirley B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 126(2): 485−493.




How to Cite

Yen, H. T. T., Lan, V. T., & Thu Hue, H. T. (2020). Expression of gene encoding flavonol synthase isolating from trung du xanh tea <i>(Camellia sinensis </i> var. <i> macrophylla) </i> in <i> E. coli </i>. Academia Journal of Biology, 42(1).